Custom Search

HOME Brain Upgrade Neurotechnology Medical Dictionary Brain Facts Healthy & Smart Life @ BIONIC
What is the Brain-Machine Interface


Brain UpgradeNeurotechnology Medical DictionaryHOME



Brain FactsBrain Upgrade Brain FoodsHealth A to Z


Conventional rigid neural devices are believed to cause micro tearing because the neural tissue is softer than the device. According to Felix, the flexibility of a thin-film polymer probe mitigates this problem. However, the flexibility also makes polymer devices difficult to implant. Felix’s solution is to temporarily attach a rigid stiffener.

“For the polymer neural interfaces, we attach the device to a needle-like stiffener using bio-dissolvable polyethylene glycol (PEG) to enable extraction of the stiffener after surgical insertion,” says Felix, who holds a Ph.D. in mechanical engineering from the University of California, Berkeley. “An innovative bonding process enables accurate alignment of the device to the stiffener.”

A novel feature of the design is a shallow channel running lengthwise, which allows the even distribution of the PEG or other bio-adhesive during assembly and implantation. Felix’s team used the method to implant unique dual-sided polymer electrode arrays into brain tissue, and these arrays successfully recorded neural signals.


What is the Brain-Computer Interface Technology

Custom Search

HOME Brain Foods Skin Care Neurotechnology Brain Facts Healthy & Smart Life @ BIONIC